Interacting diffusions on positive definite matrices

نویسندگان

چکیده

We consider systems of Brownian particles in the space positive definite matrices, which evolve independently apart from some simple interactions. give examples such processes have an integrable structure. These are related to $K$-Bessel functions matrix argument and multivariate generalisations these functions. The latter eigenfunctions a particular quantisation non-Abelian Toda chain.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON f-CONNECTIONS OF POSITIVE DEFINITE MATRICES

In this paper, by using Mond-Pečarić method we provide some inequalities for connections of positive definite matrices. Next, we discuss specifications of the obtained results for some special cases. In doing so, we use α-arithmetic, α-geometric and α-harmonic operator means.

متن کامل

On Strong Solutions for Positive Definite Jump Diffusions

We show the existence of unique global strong solutions of a class of stochastic differential equations on the cone of symmetric positive definite matrices. Our result includes affine diffusion processes and therefore extends considerably the known statements concerning Wishart processes, which have recently been extensively employed in financial mathematics. Moreover, we consider stochastic di...

متن کامل

Riemannian geometry on positive definite matrices

The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function φ in the form K D(H,K) = ∑ i,j φ(λi, λj) −1TrPiHPjK when ∑ i λiPi is the spectral decomposition of the foot point D and the Hermitian matrices H,K are tangent vectors. For such kernel metrics the tangent space has an orthogonal decomposition. The pull-back of a kernel metric under a mapping D 7→ ...

متن کامل

Riemannian Sparse Coding for Positive Definite Matrices

Inspired by the great success of sparse coding for vector valued data, our goal is to represent symmetric positive definite (SPD) data matrices as sparse linear combinations of atoms from a dictionary, where each atom itself is an SPD matrix. Since SPD matrices follow a non-Euclidean (in fact a Riemannian) geometry, existing sparse coding techniques for Euclidean data cannot be directly extende...

متن کامل

Gyrovector Spaces on the Open Convex Cone of Positive Definite Matrices

‎In this article we review an algebraic definition of the gyrogroup and a simplified version of the gyrovector space with two fundamental examples on the open ball of finite-dimensional Euclidean spaces‎, ‎which are the Einstein and M"{o}bius gyrovector spaces‎. ‎We introduce the structure of gyrovector space and the gyroline on the open convex cone of positive definite matrices and explore its...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2021

ISSN: ['0178-8051', '1432-2064']

DOI: https://doi.org/10.1007/s00440-021-01039-3